

Choose the Future

About Us

ATC a global SCATS[®] distributor, is the leading developer and manufacturer for SCATS[®] VC6 DSRC and C2X ready traffic signal controllers to the local New Zealand and Australia market with healthy export market demand for the RMS SCATS[®] type approved controllers.

Our ATSC4 controller is constantly rated as the most reliable and advanced SCATS[®] controller by the local and Global markets. To compliment our controller, ATC provides UPS and workstations for testing and configuring in a safe simulated environment, and for optimising configurations outside of the live traffic road corridors.

Through our sister company BRAUMS, we are proactive in the evolving world of smart city C-ITS technologies to interface with our controllers.

Trends in ITS Technology

- SCATS Developments
- Traffic Signal Controller Developments
- Network Centric Intersection
- Lantern technology
- Cooperative ITS shift in what an intersection looks like

- Updated SCATS Access to version 6.9.4.16
- Central Manager version 6.9.4.16
- Central Manager Configuration version 6.9.4.17
- Region version 6.9.4.16
- Region Configuration version 6.9.4.17

- New SCATS Protocol sub-version
 2
- Need to configure SCATS Access
 Slot data with VC 6 + 2
- At least 1 controller supports VC6.2 and is pending TfNSW Type Approval

View 63 View	● Site ID ○ Slot no.	Refresh	Save	View all	Close
Split Plans	Offset P	Plans	Variations	1	/olumes
Site Data	Options	Intergree	ns	Pedestrian Mo	ovements
Site ID Nember of Subsystem Controller type	63 1 • Sub 6 • 2	V Park a Suspe type:	II alarms nd Nu Numl	Slot numl umber of phas ber of split pla	ber 1 ses 7 ~ ans 1
Checksure (HEX)	0	i l	1	Number of wa	IKS 4
Checksum (HEX) Zone Normal Link Mode	h Flexilink fallb	ack	Use	site	₩KS 4 ~
Checksone (HEX) Zone O Masterlink Mode Masterlink wit Flexilink Isolated	h Flexilink fallb	ack ack	Use	Sumber of wa	lback
Checksone (HEX) Zone Normal Link Mode Masterlink wit Masterlink wit Flexilink Isolated	h Flexilink fallb	ack ack		vumber of wa	lback
Checksone (HEX) Zone Normal Link Mode Masterlink wit Flexilink Isolated Communications None	h Flexilink fallb	ack ack COM		Propagate fall	lback
Checksone (HEX) Zone Normal Link Mode Masterlink wit Elexilink Isolated Communications None None Network	h Flexilink fallb	ack ack COM Jem server		Propagate fall	lback
Checksbore (HEX) Zone OMasterlink Mode Masterlink wit Flexilink Isolated Communications None None Network Serial/Leased Dial in	h Flexilink fallb h Isolated fallba	ack ack COM lem server ne Telephon		Speed	iback

Benefit of VC6.2 is a reduction in short term comms losses

Typically, network connected intersections can experience IP related delays of 4 to 8 seconds.

Such delays can cause ST, NC and CE alarms

Fallback could be the result

Coordination can be lost – loss of efficiency

Your Solution Driven Partner

VC6.2 Advanced Phase Notification

SCATS Sequence

- SCATS tells controller in advance what the next phase will be and its duration.
- This helps mitigate short interruptions to the network connection and ST Alarms.
- Avoids falling back to Flexilink or Isolated preventing break in scats coordination.

www.atsc4.com.au

10

- The controller is given data on next phase and duration
- If comms is lost and recovered during the "next" phase no alarms will be reported.
- No Fallback will be seen.
- Controller will stay in coordination.
- Especially useful with network based comms to intersection

SCATS 6.9.4 Features

- Dwell restrictions are now configurable
- New Secure ITS Link port is an API.
- API is available in C++ and Java Languages
- Site Option ER write to log when MSS and XSF flags change.

- New Variation Routines
 - VR73 Green Window Request for Priority Vehicles
 - VR78 can terminate a Phase in Masterlink if not dwelled
 - VR84 can marry or divorce a Subsystem
 - VR85 Test link volume (VO and/or VK)
 - VR87 Can Demand a Phase
 - VR97 Can add Comments
 - See release notes for other changes to existing VARs

- Changes 1
 - Bad Data alarm caused by PLO, PP when cleared reloads relevant plan
 - Flashing Yellow (FY) alarm no longer applied until controller is up, validated
 - Expected Clearance Max Times increased from 50 to 100 seconds
 - Expected Intergreen Max Times increased from 31 to 63 seconds
 - Extended Region Option BJ and CI have been permanently disabled
 - New History (*.hst) and Detector files (*.det) can be sent to Central Manager
 - Plan Vote Calibration Factor increased from 127 to 200

- Changes 2
 - RAM Update is now recorded as "Done"
 - FV option is disabled. All volumes collected are 5 min only.
 - Serial Comms Special Mode (300bps)
 - RPS request for ped status no longer requested every second
 - Controller log are not uploaded and saved in Region's event log file
 - Signal Group data not requested every second unless a Signal Group based Strategic Input is defined at the site.
 - Subsystem Calculations for Cycle Length, Phase Splits and Offsets were being done at CG step 5 but was not evenly divisible for each cycle length and causing internal rotation and stretch phase was penalised. Now SS calcs done at 10 seconds after CG Step 0

- Bug Fixes
 - SI Alarms limited to dets 1 32. Now extended for VC6 up to 48 det channels.
 - If site VC # changed from VC5 to VC6 a detector alarm at site crashed Region. Fixed.
 - Event Log Fixed bug with user lock on Y- flag incorrectly reported in SCATS Log
 - ITS Interface Second Green Window request was being accepted but not handled as expected while first green was still active.
 - Fixed bugs with new history and detector file recordings including controller termination request.
 - Events for new sites were not being correctly recorded in detector and history files.
 - If SCATS time was being changed to an earlier time, detector and history files were recorded with the previous time.

- Getting Ready for Future Apps
 - Upgrading to 6.9.4 will prepare the SCATS software for the release of future apps.
 - Specifically SCATS Spatial Data Interface (SSDI) that will replace SCATS Picture.
 - One site takes $1/3^{rd}$ the time of SCATS Picture.
 - RMS have converted all 4200+ sites to SSDI.
 - Puts data hooks to support CITS including SPaT and MAP Messages.
 - An intersection's lanes will have attributes that determine if a movement is allowed or not.
 - Another APP is SCATS Priority Engine (SPE) to qualify emergency service priority through an interection. SPE integrates with SCATS via the ITS Link port.

SCATS 6.9.4 Features

- SSDI
- SPE

Your Solution Driven Partner

• SSDI

• SSDI

SCATS 6.9.4 Features

www.atsc4.com.au

Your Solution Driven Partner

SPE

 Enables the next generation of real time priority systems, integrated with SCATS, interface via a secure external web interface

OBJECTIVE:

 achieve favouring certain vehicle types at certain corridors with configurable schedule while minimising the impact on non-prioritised journeys, ongoing operations and road efficiency

SPE

Traffic Controller Developments

Standards Update

- ✓ AS2578 Traffic Signal Controller Specification is now 10 years old
- ✓ AS2578 Committee is likely to deprecate the standard as no Australian Road Authority is actively using it. It will be likely retired in 2020.
- ✓ Road Authorities have deferred to TfNSW's specification TSC/4 now known as TSI-SP-069.
- ✓ TfNSW (nee RMS, nee RTA, nee DMR) is actively developing TSI-SP-069
- ✓ Amendment 6 will be issued in near future likely Q220.

Current VC6.1 Features

Signal Groups

- ✓ Increased to 32 Groups
- ✓ More flexibility of group usage
- ✓ One manufacturer type
- approved.
- ✓ Second manufacturer shortly
 - to be type approved

Detection

- \checkmark Increased to 48 inputs
- ✓ Plus 8 Pedestrian Inputs

Special I/O

✓ 24 SPIPs

✓ 24 SPOPs

TC Traffic Controller Developments 🗍 Strats Mare Smarter

Reason to upgrade from VC5 to VC6.2

Your Solution Driven Partner

Traffic Controller Developments 🛛 👼 scats Mave Smarter

- Network native controller interface SCATS and Web Interface for maintenance
- Housing encoding for LV, ELV, Phase, Xformer Dimming.
- New Personality Module XPM 48 Way IEC
- Dim-By-Wire Signal & feedback for dimming new LED Lanterns.
- Better lamp fault tolerance handling and reporting.

- 2 Network Interfaces (comms (XNS SCATS) and maintenance)
- New Secure web interface to configure controllers (XNW).
- Accommodate USB interface to file storage, transfer, loading (XUP). Available now to write controller logs to USB flash drives.
- New Personality Module (XPM) with separate READ ONLY and WRITE areas (local config info).

- Personality module can be inserted/removed on live running controller without damage (controller will stop if configured for loss of XPM personality).
- Local intersection specific data veh det sensitivity, IP address etc stored in "writeable area of personality).

- PSTN modem interface (XRJ) line to internal modem (ATSC4 has this).
- Signal Group Voltage suppressing circuits now mandatory ATSC4 always had them.
- Site ID now provides configuration data for operating voltage & type (LV or ELV etc) controller housing characteristic.

- 16 types of housing are configurable by setting of diodes in Site ID and connected via ZHC.
- Phase or Amplitude dimming encoded
- LV (240v) and ELV (42v) encoded
- Additional CB for CCTV to be included.
- Flash Change Over relays have a test button and flash suppression capability.
- Generator Input Circuit mandatory

- Dim-By-Wire two control signals 15v from Site ID to command LED lanterns to dim internally (not dim from the signal group output) via ZDC.
- Single feedback wire for dim-by-wire into controller 8v.
- Front panel indicators Red = Dimmed, Green = Undimmed.

- Ethernet ports to be MDI/MDX compatible you can use straight or cross over Ethernet cable to ATSC4.
- Secure web browser interface to supervise operation of controller and is the NEW HHT.
- The controller communicates via secure network protocols.

- Better lamp fault monitoring with varying lamp fault tolerance based on signal group loads.
- In dimming mode, the algorithm shall use different lamp fault wattage values to avoid false faults.

New VC6.2 the next generation of TRAFF

- ✓ Logical Detectors Operate Logical Detectors from SCATS Access
- ✓ Report true signal group colours including the flashing state
- ✓ Report Clearance 1 & 2 pedestrian timers
- ✓ Increased number of personality flags from 64 to 128

Network Centric Intersections

- The ITS industry has been falling behind others where large scale infrastructures are deployed such as SCATS and Controllers.
- Communications to remote devices have long since changed from serial to ethernet.
- TCPIP as a suite of protocols allows ITS to have secure (https) web interfaces to configure/interrogate.
- More importantly it leverages the ability to add resilience due to the ability to fail over to a back up path.

Network Centric Interfaces

- ✓ Allows SNMP to be used for Network Monitoring Systems such as Solarwinds, Tivoli, Nagios and OpenView among others.
- \checkmark NMS is used to monitors fleets of thousands of networked devices.
- ✓ Onboard secure web server (https) allows remote access from control centres
- ✓ Ability to remotely diagnose problem before physical site attendance.
- ✓ Networking allows for capability to fail over to backup path

Network Centric Interfaces

- ✓ There are controllers that exist that use the Ethernet port as their primary link to SCATS.
- ✓ They also have a built-in 3G/4G modem that can be used to re-connect to SCATS should the ethernet link fail.
- \checkmark This increases the resilience of the SCATS Controller network.

• This is what a modern intersection is starting to look like these days

Moving Traffic Network Centric Intersections **Strats** Move Smarter

Network Centric Intersections

Network Centric Interfaces

- ✓ In near future, controllers will "talk" to above ground detectors.
- ✓ Controllers will use the Ethernet port to "pull" detector data from video detectors and radar detectors directly.
- \checkmark Such detector channels will be automatically mapped by the controller.
- \checkmark This will do away with the old way of contact closures.
- ✓ Because above ground detectors are network enabled, SNMP allows us to "monitor" the status of the individual detectors.

42

C Network Centric Intersections 🍓 scats Mare Smarter

Sample Video Detector with loops configured

	Device Status	Application Mode							
9	Local Configuration	Application Mode	Data Collection	💽 🚳 Work Mode:	Data Collection				
-	Device Configuration				Total Lanes 3				
	Maintenance	Upload Real-Time	Data						
	System Configuration	Upload Statistic D	ata Statistic Intonual (n	nin) 3					
	Encoding and Storage	Opidad Statistic D	ala Statistic milervar (n						
	Text Overlay	Enable POS Inform	mation						
	Application Mode	Display X Coordinate 0 Display Y Coordinate 0							
	O Capture Parameters	Lane No.	Traffic V Average Speed V Traffic Status V Lane Queue Length V Headway Time						
	O Image Parameters	R Haadway Distance			-				
	Custom Interface	Headway Distance	e V Lane Time Occupa	ncy 🔽 Lane Sapce Occupan	cy				
	Exception	Lane 1 Lane 2 La	ne 3						
	User Management	Enable Lane POS Linked Lane No. Lane Direction Type Traffic Headway Time Average Speed Lane Sapce Occup Copy to	1 Forward Lane Queue Length Headway Distance Lane Time Occupancy vancy	Virtual vehicle Type Traffic Status	4-2017-the 13:34:45 al Coll18 Coll18 Coll18				

CITS Cooperative ITS

- ISO TC204 has published CITS standards to be used by Road Authorities and Vehicle Manufacturers.
- Such standards cover all facets of how an intersection runs as well as highways.
- CITS also addresses emergency assistance via such protocols such as E-Call.
- All vehicles in Europe have the CITS Processor fitted since 2018.

- Data interaction between infrastructure and road users.
- Ready to deal with Autonomous Vehicles.
- Native networking allows Controllers to communicate to any external device.
- The 2 dominant CITS media are DSRC and V2X (5G).
- Controllers have been tested with DSRC Roadside Units.
- TSC/4 capable of interfacing to V2X 5G based.
- J2735 SAE Standard referred by ISO standard.
- Australia aligns to Europe for DSRC at 5.9GHz

What is SPaT?

SPaT – collection of four messages - SAE J2735 standard

- SPaT: Signal Phase and Timing provides the intersection's signal light phases
- MAP: Map Data provides the physical geometry of the intersection
- SSM: Signal Request Message requests pre-empt or priority services
- SRM: Signal Status Message information about the internal state of the controller

AS/NZS 4801 ISO 14001

SAI GLOBAL

SAI GLOBAL

ISO 9001

SAI GLOBA

Scats Move Smarter

Your Solution Driven Partner

• Purpose of MAP message

• Geometric layout of intersection

Message data

- Reference point (intersection centre)
- Number of approaches
- Lane number
- Lane width
- Lane attributes
 - Straight, Left, Right, Turn on Red, Bus, etc...
- Offsets
 - Points along each lane used to detect vehicle position

Annroach ID -

AS/NZS 4801 ISO 14001

SAI GLOBAL

SAI GLOBAL

ISO 9001

SAI GLOBA

Ir Solution Driven Partner

- CITS covers the so-called SPaT and MAP messages.
- SPaT Signal Phasing and Timing is where a controller supplies the latest timing on how long is left in a current phase.
- For fixed time systems this is simple.
- For adaptive systems this is not so simple.
- The adaptive control system suppliers (SCATS and SCOOT) elected to fill the timing data with only the clearance times.
- SPaT data also tells vehicles if a specific movement (ingress and egress) is allowed or not and what restrictions apply.

CITS WIRELESS SYSTEM BLOCK DIAGRAM

Health & Safety Environment AS/NZS 4800 ISO 14001 Balacente

- Remember SSDI?
- SSDI is the SCATS way of integrating the MAP data.
- The MAP data is known as Localisation.
- Localisation is where a controller "transmits" the current layout of the intersection.
- It tells the cars how many lanes each approach has and where each lane can egress to.
- This assists applications such as in car navigation as well as autonomous vehicles.

- Each intersection's traffic controller will need to interface to a Roadside Unit via an Ethernet cable.
- Roadside units have been designed to connector to a Power Over Ethernet switch.
- So it is imperative to have controllers that can use the ethernet port to exchange CITS data.

What are you doing to be ready for CITS enabled vehicles?

Lantern Technology

- Lanterns have been developed and are available on the market to support the DBW enabled controllers.
- These meet the latest AS2144:2014 Specification both for wattage reporting as well as the Dim-By-Wire functionality.
- These lanterns can actually work at lower wattages but a prohibited from doing so until the TfNSW Specification TSI-SP-069 specifies a lower wattage reporting regime. (5W minimum undimmed)

- Latest development in Europe is for a more intelligent lantern.
- The next generation is a bus based lantern that can report its state and wattages directly to the controller.
- Lanterns are configured to belong to an approach based setup.
- Essentially each pole will have a cluster of lanterns all talking back via a node to a controller.

Question Time ?????