

HCC Traffic Light Toy - How to

Rev. 1 — 3 Nov 2018

Document information

Info Content

Keywords HCC, SNUG, IoT, Development, Integration

Abstract This application note attempts to provide the reader with the necessary

information to program their SNUG-2018 Traffic Light Toy, to expand on

the basic capabilities provided during the Morning Tea exercise at SNUG

Hamilton 2018.

 HCC Traffic Light Toy - How to

 Rev. 1 — 3 Nov 2018 2 of 30

Revision history

Rev Date Description

1 20181103 Initial version.

DRAFT
DRAFT DRAFT D

DRAFT DRAFT DRAFT DRA
DRAFT DRAFT DRAFT DRAFT DRAFT

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT D
DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

DRA

 HCC Traffic Light Toy - How to

 Rev. 1 — 3 Nov 2018 3 of 30

1. Overview

Hamilton City Council requested that Opito design a small exercise for SNUG participants

to complete during morning tea of day 1 at the SNUG conference hosted in Hamilton.

Opito gladly developed the exercise, however due to time constraints the full potential of

the electronic hardware provided was not exposed during the conference.

This application note will show how to expand on the capabilities of the hardware, while

allowing the reader the opportunity to reprogram the device to meet their specific

requirements and hopefully building something awesome!

Where possible we will include all web links and source code within this document as a

package of supporting files invariably gets separated, making this document useless.

This app-note is targeted toward Windows users.

2. The Hardware

2.1 NodeMCU – WiFi enabled processor

Before we begin, I must confess to not having used this device previously, we purchased

it off the internet and were attracted to it based on its capabilities and price. In general,

the programming of it was reasonably straight forward if a little flaky, and the quality of

boards was OK, although we had about a 20% OOB (Out of box) failure rate, we never

tried to recover or repair these faulty boards, so the fix on them could be quite straight

forward.

The module is known as a NodeMCU, this in turn has a processor fitted to the module

called an ESP8266.

The NodeMCU comes by default with a scripting language called LUA. We wiped this

immediately and installed a version of the programming language call Python, as we

thought that this might be more widely used in the industry, and therefore the learning

curve for those familiar with Python would be lower.

2.1.1 Connecting to your device
A prerequisite to program ESP8266-based modules is to establish a communications
channel from your PC, to the device over USB. This in turn requires your system to
detect the USB-to-Serial (aka USB-to-TTL, aka USB-to-UART) adapter on the ESP8266
module.

The chip on the NodeMCU that performs this USB to UART is manufactured by Silabs,
they have a driver for your PC here.

https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-

drivers

https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers
https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers

DRAFT
DRAFT DRAFT D

DRAFT DRAFT DRAFT DRA
DRAFT DRAFT DRAFT DRAFT DRAFT

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT D
DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

DRA

 HCC Traffic Light Toy - How to

 Rev. 1 — 3 Nov 2018 4 of 30

2.1.2 Resetting your device back to factory defaults

You can put the code back to a factory version using this tool, we used the command line

version of this tool to load Micropython on to the module.

https://github.com/marcelstoer/nodemcu-pyflasher/releases

2.1.3 Wiring

The eagle eyed among you would have noticed that we paralleled up a couple of

resistors on the Green LED to get enough brightness out of them for the day, we did it

this way as it was simpler to do this, rather than having a number of different value

resistors for you all to sort through, you are welcome to change them for something more

suitable should you wish to.

Additionally, as we were supplying the power from a couple of AA batteries we bypassed

the on board voltage regulator, and “back fed” the power supply into the output of the

regulator, this is not ideal as you run the risk of blowing up the chip if you supply too

much voltage to it. We were never going to be able to this with the AA batteries so were

fine. If you want to supply it with a proper power supply please use the VIN pin on the

module.

Fig 1. Wiring Diagram

https://github.com/marcelstoer/nodemcu-pyflasher/releases

DRAFT
DRAFT DRAFT D

DRAFT DRAFT DRAFT DRA
DRAFT DRAFT DRAFT DRAFT DRAFT

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT D
DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

DRA

 HCC Traffic Light Toy - How to

 Rev. 1 — 3 Nov 2018 5 of 30

Fig 2. Wiring Schematic

Fig 3. Wiring Overlay

DRAFT
DRAFT DRAFT D

DRAFT DRAFT DRAFT DRA
DRAFT DRAFT DRAFT DRAFT DRAFT

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT D
DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

DRA

 HCC Traffic Light Toy - How to

 Rev. 1 — 3 Nov 2018 6 of 30

3. Getting Started

A USB cable will power the module, you also don’t need to have the LEDs and button

connected to make it work, just the USB is enough to get you going, the LEDs might be

handy for determining if something is working though.

3.1 Development Environment
Download and install your preferred development environment, we used Visual Studio
Code, which is reasonably lightweight and full featured. https://code.visualstudio.com/

You are welcome to use an editor of your choice however, Atom is also popular

https://atom.io/ as is Notepad++ (which is the best notepad replacement ever!)

https://notepad-plus-plus.org/

Our examples below assume you are using Visual Studio Code.

After downloading and installing VS Code you have a window that looks like this. Click on

the extensions icon on the left side bar, circled in the picture below.

Fig 4. Visual Studio Code

Now install the pymakr extension by typing pymakr in the search box as illustrated.

https://code.visualstudio.com/
https://atom.io/
https://notepad-plus-plus.org/

DRAFT
DRAFT DRAFT D

DRAFT DRAFT DRAFT DRA
DRAFT DRAFT DRAFT DRAFT DRAFT

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT D
DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

DRA

 HCC Traffic Light Toy - How to

 Rev. 1 — 3 Nov 2018 7 of 30

Fig 5. Installing pymakr extension

Once installed there are instructions on how to use it and the commands available on the
right-hand window. When the installation is completed, VS code will need to be reloaded
to activate the pymakr extension. The install button, changes to reload, click on this and
we are all ready to go.

3.1.1 Creating a pymakr.conf file

We need to make a file named pymakr.conf in our project. This tells VS code where the

USB communications port is located and how to connect to the module. If you want you

are also able to connect to the module through the WiFi, however you will have to

reconfigure your PC network interface to do this and connect to the module on

192.168.4.1, and it is outside the scope of this application note.

The first thing that we have to do is create a directory for our project to reside in, on our

computer.

Step 1 is to click on the file explorer side bar, as shown below,

Step 2 is to open a folder where we will store our project. We created our project

directory at Desktop\opito_traffic_light you can save it wherever you want of course.

DRAFT
DRAFT DRAFT D

DRAFT DRAFT DRAFT DRA
DRAFT DRAFT DRAFT DRAFT DRAFT

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT D
DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

DRA

 HCC Traffic Light Toy - How to

 Rev. 1 — 3 Nov 2018 8 of 30

Fig 6. Creating a Project Directory

Step 3 create the pymakr.conf file.

Fig 7. Creating a new file

DRAFT
DRAFT DRAFT D

DRAFT DRAFT DRAFT DRA
DRAFT DRAFT DRAFT DRAFT DRAFT

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT D
DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

DRA

 HCC Traffic Light Toy - How to

 Rev. 1 — 3 Nov 2018 9 of 30

Then paste the following code into the pymakr.conf file

//-----------BEGIN COPY (DON’T INCLUDE THIS LINE) -----------//

{

 "address": "COM93",

 "username": "micro",

 "password": "python",

 "sync_folder": "",

 "open_on_start": true,

 "safe_boot_on_upload": false,

 "sync_file_types": "py,txt,log,json,xml,html,js,css,mpy",

 "ctrl_c_on_connect": false,

 "sync_all_file_types": false,

 "auto_connect": true

}

//-----------END COPY (DON’T INCLUDE THIS LINE) -----------//

Please note – the address line is the comport number that your nodeMCU module has

enumerated as on Windows – YOU WILL NEED TO EDIT THIS. It can be a little hard to

find this comport number.

We find the easiest way to locate this information is to click on the Windows (10) start

button and simply start typing “Bluetooth” it will bring up the option for “Bluetooth and

other devices settings”. Select this menu options and you should see a SiLabs CP2102

(COMxx) device listed there. This is the comport number you want.

Finally save the pymakr.conf file, and your window should look like this.

Fig 8. Pymakr.conf file

DRAFT
DRAFT DRAFT D

DRAFT DRAFT DRAFT DRA
DRAFT DRAFT DRAFT DRAFT DRAFT

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT D
DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

DRA

 HCC Traffic Light Toy - How to

 Rev. 1 — 3 Nov 2018 10 of 30

3.1.2 Creating main.py

Now we create our application file in the same manner we created the configuration file,

we have to call it main.py as this is a special name for the module to run automatically on

boot. There is another file called boot.py which you can use for configuration and setup

data as well, but we are not using that in our demo.

3.1.2.1 Main.py Simple

This code is the code that was loaded to your devices prior to leaving the conference, if

you didn’t get your code updated then you will want to load this code as a reference

point.it will work without an active WiFi connection, which is probably what you want if

you are setting it up at home for the first time.

//-----------BEGIN COPY (DON’T INCLUDE THIS LINE) -----------//

SNUG Demo 1 Nov 2018

#no copyright use as you see fit.

#no warranty, and no support, we strung it together quick.

#Regards

#Marshall

www.opito.io

021 748 703

import time

import sys; print(sys.version_info)

import esp

import urandom

import machine

import ubinascii

from machine import Pin

from machine import Timer

#pinouts for the Node.MCU module

#D0 = Pin(16, Pin.OUT)

#D1 = Pin(5, Pin.OUT)

#D2 = Pin(4, Pin.OUT)

#D3 = Pin(0, Pin.OUT)

#D4 = Pin(2, Pin.OUT) //also the blue LED on the Wifi

#D5 = Pin(14, Pin.OUT)

#D6 = Pin(12, Pin.OUT)

#D7 = Pin(13, Pin.OUT)

#D8 = Pin(15, Pin.OUT)

DRAFT
DRAFT DRAFT D

DRAFT DRAFT DRAFT DRA
DRAFT DRAFT DRAFT DRAFT DRAFT

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT D
DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

DRA

 HCC Traffic Light Toy - How to

 Rev. 1 — 3 Nov 2018 11 of 30

#RX = Pin(3, Pin.OUT)

#TX = Pin(1, Pin.OUT)

#A0 = Pin(ADC0, Pin.OUT)

#SD3 = Pin(10, Pin.OUT)

#SD2 = Pin(9, Pin.OUT)

#SD1 = Pin(MOSI, Pin.OUT)

#CMD = Pin(CS, Pin.OUT)

#SDO = Pin(MISO, Pin.OUT)

#CLK = Pin(SCLK, Pin.OUT)

BLU_LED = Pin(16, Pin.OUT)

RED_LED = Pin(5, Pin.OUT)

YEL_LED = Pin(4, Pin.OUT)

GRN_LED = Pin(12, Pin.OUT)

BUTTON = Pin(14, Pin.IN, Pin.PULL_UP)

WIFI_LED = Pin(2, Pin.OUT)

OFF_VAL = 3

RED_VAL = 2

YEL_VAL = 1

GRN_VAL = 0

tmr_blink = Timer(-1)

tmr_debounce = Timer(-1)

tmr_service = Timer(-1) #used as an independent main() in case we block

trying to connect to WiFi (we still want our LEDs to blink away.)

tmr_turn_off_leds = Timer(-1)

#stupid python doesn't support static

debounce_count = 0

last_button = 0

button_state = 0

this_led = 0

last_led = 0

led_incremented = 0

leds_timeout = False

boot_complete = False

start_time = 0

hold_time = 0

random_led = False

first_run = True

DRAFT
DRAFT DRAFT D

DRAFT DRAFT DRAFT DRA
DRAFT DRAFT DRAFT DRAFT DRAFT

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT D
DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

DRA

 HCC Traffic Light Toy - How to

 Rev. 1 — 3 Nov 2018 12 of 30

def tmr_callback(self):

print ('tmr fired')

 BLU_LED.value(not BLU_LED.value())

 if BLU_LED.value() == 0:

 tmr_blink.init(period=50, mode=Timer.PERIODIC, callback=tmr_callback)

 else:

 tmr_blink.init(period=950, mode=Timer.PERIODIC, callback=tmr_callback)

def tmr_turn_off_leds_callback(self):

 global leds_timeout

 global last_led

 last_led = 27

 leds_timeout = True

def tmr_debounce_callback(self):

 global last_button

 global debounce_count

 global button_state

 global this_led

 global led_incremented

 global leds_timeout

 global start_time

 global hold_time

 global first_run

 if last_button == BUTTON.value():

 debounce_count = debounce_count + 1

 if debounce_count >= 5:

 debounce_count = 6

 button_state = not BUTTON.value()

 if led_incremented == 0:

 led_incremented = 1

 if BUTTON.value() == 0: #active low (comment this if you want

change of state.)

 leds_timeout = False

 start_time = time.time()

DRAFT
DRAFT DRAFT D

DRAFT DRAFT DRAFT DRA
DRAFT DRAFT DRAFT DRAFT DRAFT

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT D
DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

DRA

 HCC Traffic Light Toy - How to

 Rev. 1 — 3 Nov 2018 13 of 30

 print("button pressed ", this_led)

 if BUTTON.value() == 1:

 if first_run == True:

 first_run = False

 else:

 print("button released ", this_led)

 hold_time = time.time() - start_time

 print("button held for " + str(hold_time) + " seconds")

 if hold_time >= 2: #held down

 random_led = True

 print("random , set to " + str(random_led))

 randomise()

 else:

 random_led = False

 this_led = this_led + 1

 if this_led >= 4:

 this_led = 0

 else:

 debounce_count = 0

 led_incremented = 0

 last_button = BUTTON.value()

#stupid python doesn't have fwd decl so this has to be init'd here.

tmr_blink.init(period=500, mode=Timer.PERIODIC, callback=tmr_callback)

tmr_debounce.init(period=10, mode=Timer.PERIODIC,

callback=tmr_debounce_callback)

def randomise():

 global this_led

 global leds_timeout

 leds_timeout = False

 rand_num = urandom.getrandbits(2)

 if rand_num < 1.33:

 rand_num = 0

 elif rand_num > 1.33 and rand_num < 2.66 :

 rand_num = 1

 else:

DRAFT
DRAFT DRAFT D

DRAFT DRAFT DRAFT DRA
DRAFT DRAFT DRAFT DRAFT DRAFT

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT D
DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

DRA

 HCC Traffic Light Toy - How to

 Rev. 1 — 3 Nov 2018 14 of 30

 rand_num = 2

 this_led = rand_num

 if this_led > 2:

 this_led = 2

 #cycle

 start_time = time.time()

 rand_num = urandom.getrandbits(3)

 print(rand_num)

 while (time.time() - start_time < rand_num):

 time.sleep_ms(50)

 RED_LED.value(1)

 YEL_LED.value(1)

 GRN_LED.value(0)

 time.sleep_ms(50)

 RED_LED.value(1)

 YEL_LED.value(0)

 GRN_LED.value(1)

 time.sleep_ms(50)

 RED_LED.value(0)

 YEL_LED.value(1)

 GRN_LED.value(1)

def tmr_service_callback(self):

 global last_led

 global this_led

 global leds_timeout

 #this is on a 10mSec call back for general servicing.

 if leds_timeout == True: #set from a callback timer when the button is

released.

 RED_LED.value(1)

 YEL_LED.value(1)

 GRN_LED.value(1)

 else:

 if this_led != last_led:

 last_led = this_led

 tmr_turn_off_leds.init(period=60000, mode=Timer.ONE_SHOT,

callback=tmr_turn_off_leds_callback)

 if this_led == RED_VAL:

 RED_LED.value(0)

 YEL_LED.value(1)

DRAFT
DRAFT DRAFT D

DRAFT DRAFT DRAFT DRA
DRAFT DRAFT DRAFT DRAFT DRAFT

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT D
DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

DRA

 HCC Traffic Light Toy - How to

 Rev. 1 — 3 Nov 2018 15 of 30

 GRN_LED.value(1)

 if this_led == YEL_VAL:

 RED_LED.value(1)

 YEL_LED.value(0)

 GRN_LED.value(1)

 if this_led == GRN_VAL:

 RED_LED.value(1)

 YEL_LED.value(1)

 GRN_LED.value(0)

 if this_led == OFF_VAL:

 RED_LED.value(1)

 YEL_LED.value(1)

 GRN_LED.value(1)

tmr_service.init(period=10, mode=Timer.PERIODIC, callback=tmr_service_callback)

def main():

 WIFI_LED.value(1)

 print("code ver 11")

 print("All done running off timers.")

if __name__ == "__main__":

 main()

//-----------END COPY (DON’T INCLUDE THIS LINE) -----------//

3.1.2.2 Main.py With WiFi

This is the exact code that was running at SNUG, it was actually connecting to a WiFi

Access point and counting the button presses, and we were able to turn on the LEDs on

your boards remotely as well! However, it wasn’t fully utilized at the time as we had some

network capacity issues that needed to be ironed out. It was still really cool though so we

include for your reference.

//-----------BEGIN COPY (DON’T INCLUDE THIS LINE) -----------//

DRAFT
DRAFT DRAFT D

DRAFT DRAFT DRAFT DRA
DRAFT DRAFT DRAFT DRAFT DRAFT

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT D
DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

DRA

 HCC Traffic Light Toy - How to

 Rev. 1 — 3 Nov 2018 16 of 30

#SNUG Demo 1 Nov 2018

#no copyright use as you see fit.

#no warranty, and no support, we strung it together quick.

#Regards

#Marshall

www.opito.io

021 748 703

import time

import sys; print(sys.version_info)

import esp

import urandom

import machine

import network

import ubinascii

from machine import Pin

from machine import Timer

from umqtt.robust import MQTTClient

#pinouts for the Node.MCU module

#D0 = Pin(16, Pin.OUT)

#D1 = Pin(5, Pin.OUT)

#D2 = Pin(4, Pin.OUT)

#D3 = Pin(0, Pin.OUT)

#D4 = Pin(2, Pin.OUT) //also the blue LED on the Wifi

#D5 = Pin(14, Pin.OUT)

#D6 = Pin(12, Pin.OUT)

#D7 = Pin(13, Pin.OUT)

#D8 = Pin(15, Pin.OUT)

#RX = Pin(3, Pin.OUT)

#TX = Pin(1, Pin.OUT)

#A0 = Pin(ADC0, Pin.OUT)

#SD3 = Pin(10, Pin.OUT)

#SD2 = Pin(9, Pin.OUT)

#SD1 = Pin(MOSI, Pin.OUT)

#CMD = Pin(CS, Pin.OUT)

#SDO = Pin(MISO, Pin.OUT)

#CLK = Pin(SCLK, Pin.OUT)

BLU_LED = Pin(16, Pin.OUT)

RED_LED = Pin(5, Pin.OUT)

YEL_LED = Pin(4, Pin.OUT)

GRN_LED = Pin(12, Pin.OUT)

BUTTON = Pin(14, Pin.IN, Pin.PULL_UP)

WIFI_LED = Pin(2, Pin.OUT)

TOPIC = b"+/opito/snug/demo/set"

DRAFT
DRAFT DRAFT D

DRAFT DRAFT DRAFT DRA
DRAFT DRAFT DRAFT DRAFT DRAFT

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT D
DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

DRA

 HCC Traffic Light Toy - How to

 Rev. 1 — 3 Nov 2018 17 of 30

OFF_VAL = 3

RED_VAL = 2

YEL_VAL = 1

GRN_VAL = 0

tmr_print = Timer(-1)

tmr_connect = Timer(-1)

tmr_debounce = Timer(-1)

tmr_service = Timer(-1) #used as an independent main() in case we block

trying to connect to WiFi (we still want our LEDs to blink away.)

tmr_turn_off_leds = Timer(-1)

tmr_send_mqtt = Timer(-1)

#stupid python doesn't support static

debounce_count = 0

last_button = 0

button_state = 0

this_led = 0

last_led = 0

led_incremented = 0

leds_timeout = False

boot_complete = False

start_time = 0

hold_time = 0

random_led = False

first_run = True

my_event = "blank"

flg_vote = False

flg_rdy_for_mqtt = False

wlan = network.WLAN(network.STA_IF)

CLIENT_ID = ubinascii.hexlify(machine.unique_id())

SERVER = "192.168.5.253"

def translate(value, leftMin, leftMax, rightMin, rightMax):

 leftSpan = leftMax - leftMin

 rightSpan = rightMax = rightMin

 scaledValue = float(value - leftMin) / float(leftSpan)

 return rightMin + (scaledValue * rightSpan)

Receive topic

def opito_mqtt_receive_cb(topic, msg):

DRAFT
DRAFT DRAFT D

DRAFT DRAFT DRAFT DRA
DRAFT DRAFT DRAFT DRAFT DRAFT

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT D
DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

DRA

 HCC Traffic Light Toy - How to

 Rev. 1 — 3 Nov 2018 18 of 30

 global this_led

 global leds_timeout

 print((topic, msg))

 leds_timeout = False

 if msg == b"RED_ON":

 this_led = RED_VAL

 print("receive red: " + str(RED_VAL))

 if msg == b"YEL_ON":

 this_led = YEL_VAL

 print("receive yel")

 if msg == b"GRN_ON":

 this_led = GRN_VAL

 print("receive green")

 if msg == b"OFF":

 this_led = OFF_VAL

 print("receive off")

def tmr_turn_off_leds_callback(self):

 global leds_timeout

 global last_led

 last_led = 27

 leds_timeout = True

def tmr_send_mqtt_callback(self):

 opito_mqtt_vote()

def opito_mqtt_vote():

 global my_event

 global flg_vote

 global this_led

 my_event = "{\"vote\":" + str(this_led) + "}"

 flg_vote = True

def tmr_debounce_callback(self):

 global last_button

 global debounce_count

 global button_state

 global this_led

 global led_incremented

 global leds_timeout

 global start_time

 global hold_time

 global first_run

DRAFT
DRAFT DRAFT D

DRAFT DRAFT DRAFT DRA
DRAFT DRAFT DRAFT DRAFT DRAFT

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT D
DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

DRA

 HCC Traffic Light Toy - How to

 Rev. 1 — 3 Nov 2018 19 of 30

 if last_button == BUTTON.value():

 debounce_count = debounce_count + 1

 if debounce_count >= 5:

 debounce_count = 6

 button_state = not BUTTON.value()

 if led_incremented == 0:

 led_incremented = 1

 if BUTTON.value() == 0: #active low (comment this if you want

change of state.)

 leds_timeout = False

 start_time = time.time()

 #tmr_send_mqtt.deinit()

 print("button pressed ", this_led)

 if BUTTON.value() == 1:

 if first_run == True:

 first_run = False

 else:

 print("button released ", this_led)

 hold_time = time.time() - start_time

 print("button held for " + str(hold_time) + " seconds")

 if hold_time >= 2: #held down

 random_led = True

 print("random , set to " + str(random_led))

 randomise()

 else:

 random_led = False

 print("voting")

 this_led = this_led + 1

 if this_led >= 4:

 this_led = 0

 if this_led < 3:

 tmr_send_mqtt.init(period=5000,

mode=Timer.ONE_SHOT, callback=tmr_send_mqtt_callback)

 else:

 debounce_count = 0

 led_incremented = 0

 last_button = BUTTON.value()

#stupid python doesn't have fwd decl so this has to be init'd here.

tmr_debounce.init(period=10, mode=Timer.PERIODIC,

callback=tmr_debounce_callback)

def randomise():

 global this_led

 global leds_timeout

 leds_timeout = False

DRAFT
DRAFT DRAFT D

DRAFT DRAFT DRAFT DRA
DRAFT DRAFT DRAFT DRAFT DRAFT

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT D
DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

DRA

 HCC Traffic Light Toy - How to

 Rev. 1 — 3 Nov 2018 20 of 30

 rand_num = urandom.getrandbits(2)

 if rand_num < 1.33:

 rand_num = 0

 elif rand_num > 1.33 and rand_num < 2.66 :

 rand_num = 1

 else:

 rand_num = 2

 this_led = rand_num

 if this_led > 2:

 this_led = 2

 #cycle

 start_time = time.time()

 rand_num = urandom.getrandbits(3)

 print(rand_num)

 while (time.time() - start_time < rand_num):

 time.sleep_ms(50)

 RED_LED.value(1)

 YEL_LED.value(1)

 GRN_LED.value(0)

 time.sleep_ms(50)

 RED_LED.value(1)

 YEL_LED.value(0)

 GRN_LED.value(1)

 time.sleep_ms(50)

 RED_LED.value(0)

 YEL_LED.value(1)

 GRN_LED.value(1)

 tmr_send_mqtt.init(period=5000, mode=Timer.ONE_SHOT,

callback=tmr_send_mqtt_callback)

def tmr_service_callback(self):

 global last_led

 global this_led

 global leds_timeout

 #this is on a 10mSec call back for general servicing.

 if leds_timeout == True: #set from a callback timer when the button is

released.

 RED_LED.value(1)

 YEL_LED.value(1)

 GRN_LED.value(1)

 else:

 if this_led != last_led:

 last_led = this_led

 tmr_turn_off_leds.init(period=60000, mode=Timer.ONE_SHOT,

callback=tmr_turn_off_leds_callback)

 if this_led == RED_VAL:

 RED_LED.value(0)

 YEL_LED.value(1)

DRAFT
DRAFT DRAFT D

DRAFT DRAFT DRAFT DRA
DRAFT DRAFT DRAFT DRAFT DRAFT

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT D
DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

DRA

 HCC Traffic Light Toy - How to

 Rev. 1 — 3 Nov 2018 21 of 30

 GRN_LED.value(1)

 if this_led == YEL_VAL:

 RED_LED.value(1)

 YEL_LED.value(0)

 GRN_LED.value(1)

 if this_led == GRN_VAL:

 RED_LED.value(1)

 YEL_LED.value(1)

 GRN_LED.value(0)

 if this_led == OFF_VAL:

 RED_LED.value(1)

 YEL_LED.value(1)

 GRN_LED.value(1)

 if boot_complete == True:

 WIFI_LED.value(last_button)

def tmr_connect_callback(self):

 global wlan

 print("checking WLAN")

 if wlan.isconnected() == False:

 do_connect()

tmr_service.init(period=10, mode=Timer.PERIODIC, callback=tmr_service_callback)

tmr_connect.init(period=30000, mode=Timer.PERIODIC,

callback=tmr_connect_callback)

def do_connect():

 print("actually reconnecting")

 global wlan

 global flg_rdy_for_mqtt

 ssid = "opito-2400"

 password = "123abcd123temp"

 wlan = network.WLAN(network.STA_IF)

 if wlan.isconnected() == True:

 print("Already connected")

 return

 print('connecting to network...')

 wlan.active(True)

 wlan.connect(ssid,password)

 while wlan.isconnected() == False:

 WIFI_LED.value(not WIFI_LED.value())

 time.sleep_ms(50)

DRAFT
DRAFT DRAFT D

DRAFT DRAFT DRAFT DRA
DRAFT DRAFT DRAFT DRAFT DRAFT

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT D
DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

DRA

 HCC Traffic Light Toy - How to

 Rev. 1 — 3 Nov 2018 22 of 30

 #pass

 print("connection successful")

 print('network config:', wlan.ifconfig())

 WIFI_LED.value(1);

 flg_rdy_for_mqtt = True

Receive topic

def opito_mqtt_receive_cb(topic, msg):

 global this_led

 global leds_timeout

 print((topic, msg))

 leds_timeout = False

 if msg == b"RED_ON":

 this_led = RED_VAL

 print("receive red: " + str(RED_VAL))

 if msg == b"YEL_ON":

 this_led = YEL_VAL

 print("receive yel")

 if msg == b"GRN_ON":

 this_led = GRN_VAL

 print("receive green")

 if msg == b"OFF":

 this_led = OFF_VAL

 print("receive off")

def tmr_print_callback(self):

 print("Current LED is " + str(this_led))

def main():

 print("code ver 9")

 global flg_vote

 global flg_rdy_for_mqtt

 do_connect()

 opito_mqtt = MQTTClient(CLIENT_ID,SERVER)

 opito_mqtt.set_callback(opito_mqtt_receive_cb)

 opito_mqtt.connect()

 opito_mqtt.subscribe(TOPIC)

 print("Connected to %s, subscribed to %s topic" % (SERVER, TOPIC))

 opito_mqtt.publish(bytes(CLIENT_ID + "/opito/snug/demo/evt") ,b"online")

DRAFT
DRAFT DRAFT D

DRAFT DRAFT DRAFT DRA
DRAFT DRAFT DRAFT DRAFT DRAFT

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT D
DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

DRA

 HCC Traffic Light Toy - How to

 Rev. 1 — 3 Nov 2018 23 of 30

 boot_complete = True

 while True:

 if flg_vote == True:

 flg_vote = False

 print("sending MQTT event", (my_event))

 opito_mqtt.publish(bytes(CLIENT_ID + "/opito/snug/demo/evt"),

bytes(my_event,'utf-8'))

 if flg_rdy_for_mqtt == True:

 flg_rdy_for_mqtt = False

 print("hmm we are mqtt reconnecting")

 time.sleep_ms(50)

 opito_mqtt.disconnect()

 time.sleep_ms(50)

 opito_mqtt.connect()

 opito_mqtt.subscribe(TOPIC)

 print("Connected to %s, subscribed to %s topic" % (SERVER, TOPIC))

 opito_mqtt.check_msg()

 time.sleep(1)

 print("All done.")

if __name__ == "__main__":

 main()

//-----------END COPY (DON’T INCLUDE THIS LINE) -----------//

3.1.3 Close and Reopen VS Code

We found when writing this application note that it was necessary to close VS Code and

relaunch it to get the pymakr extension to load properly.

Once VS Code restarts it opens another window at the bottom of the screen, this is called

the terminal window, and is the communications between your PC and NodeMCU

module.

3.1.4 Sending Code to your NodeMCU

Once we get this far, we are ready to connect to our module and send it some code. As

python is an interpreted language, we don’t need to run through a compile process,

simply send it the code and we are ready to run.

At the bottom of the VS code window is a new small tool bar, the “pycom console” button

allows the connection and disconnection of the module, it should have a tick beside it if

its connected.

Step 1 Click on the “Pycom Console” button if it doesn’t’ have a tick beside it.

DRAFT
DRAFT DRAFT D

DRAFT DRAFT DRAFT DRA
DRAFT DRAFT DRAFT DRAFT DRAFT

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT D
DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

DRA

 HCC Traffic Light Toy - How to

 Rev. 1 — 3 Nov 2018 24 of 30

Step 2 You should see three >>> symbols appear at the console prompt, this is the

module waiting to accept commands, if you know a little bit about python you can issue

commands at this prompt.

Step 3 Press the “Upload” button, this sends your code to the module, all going well we

have some code running!

Fig 9. Connecting to your module

If your code is running properly you should see the LEDs turn on and a little bit of debug

information appear at the console as shown below – each time you press (and release)

the button you get a little bit of debug to provide some confidence that your code is

running.

Each time we make a change to the code we update the code version string so that when

we update the module we know that the code is the new version, we had a few issues

connecting to the device when we initially started and this provided a confidence that the

code was what we thought

def main():

 WIFI_LED.value(1)

 print("code ver 11")

 print("All done running off timers.")

DRAFT
DRAFT DRAFT D

DRAFT DRAFT DRAFT DRA
DRAFT DRAFT DRAFT DRAFT DRAFT

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT D
DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

DRA

 HCC Traffic Light Toy - How to

 Rev. 1 — 3 Nov 2018 25 of 30

Fig 10. Code up and running

And that’s it! Hopefully this is enough to get you going, its by no means an exhaustive

document. There are a heap of forums and related resources on the web, and we have

included a few of the links we found useful in the references section below.

Feel free to expand on the example code, as you see fit, and control your watering

systems, traffic lights, garage doors, or anything else.

Should you need to get in touch with us we can offer limited support.

Marshall Brown

marshall@opito.io

021 748703

07 957 0188

mailto:marshall@opito.io

DRAFT
DRAFT DRAFT D

DRAFT DRAFT DRAFT DRA
DRAFT DRAFT DRAFT DRAFT DRAFT

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT D
DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

DRA

 HCC Traffic Light Toy - How to

 Rev. 1 — 3 Nov 2018 26 of 30

4. All Done

All Done !

DRAFT
DRAFT DRAFT D

DRAFT DRAFT DRAFT DRA
DRAFT DRAFT DRAFT DRAFT DRAFT

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT D
DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

DRA

 HCC Traffic Light Toy - How to

 Rev. 1 — 3 Nov 2018 27 of 30

5. References

5.1 ESP8266
The chip you are actually programming on the NodeMCU module

https://en.wikipedia.org/wiki/ESP8266

5.2 NodeMCU

Link to the NodeMCU website

http://nodemcu.com/index_en.html

Link to more resources on Wikipedia

https://en.wikipedia.org/wiki/NodeMCU

Node MCU pinouts

Fig 11. NodeMCU pinout

https://en.wikipedia.org/wiki/ESP8266
http://nodemcu.com/index_en.html
https://en.wikipedia.org/wiki/NodeMCU

DRAFT
DRAFT DRAFT D

DRAFT DRAFT DRAFT DRA
DRAFT DRAFT DRAFT DRAFT DRAFT

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT D
DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

DRA

 HCC Traffic Light Toy - How to

 Rev. 1 — 3 Nov 2018 28 of 30

5.2.1 Aliexpress

To purchase additional units this is where we purchased them from. Make sure you get

the ones with the CP2102 USB to serial device on them.

https://www.aliexpress.com/item/V3-Wireless-module-NodeMcu-4M-bytes-Lua-WIFI-

Internet-of-Things-development-board-based-ESP8266-for/32469441553.html

5.3 Micropython
The programming language we used on the demo
https://micropython.org/

The binary image loaded into the NodeMCU module we used the latest build esp8266-
20180511-v1.9.4.bin at the time of writing.

Here is the link to all the images available (there might be a newer one)
https://micropython.org/download#esp8266

Quick reference to the feature set and API for extending our examples.
http://docs.micropython.org/en/latest/esp8266/quickref.html

How to install Micropython on your NodeMCU module
http://docs.micropython.org/en/latest/esp8266/tutorial/intro.html#intro

5.4 Visual Studio Code
We use Visual Studio Code for writing the software. There is an extension called pymakr
which allows you to connect and upload the code to the module. There are many other
extensions which can aide you in Syntax highlighting etc, however this is left as an
exercise for the reader.
https://code.visualstudio.com/

5.5 Fritzing
Simple breadboard drawing tool for laying out your designs
http://fritzing.org/home/

https://www.aliexpress.com/item/V3-Wireless-module-NodeMcu-4M-bytes-Lua-WIFI-Internet-of-Things-development-board-based-ESP8266-for/32469441553.html
https://www.aliexpress.com/item/V3-Wireless-module-NodeMcu-4M-bytes-Lua-WIFI-Internet-of-Things-development-board-based-ESP8266-for/32469441553.html
https://micropython.org/
http://micropython.org/resources/firmware/esp8266-20180511-v1.9.4.bin
http://micropython.org/resources/firmware/esp8266-20180511-v1.9.4.bin
https://micropython.org/download#esp8266
http://docs.micropython.org/en/latest/esp8266/quickref.html
http://docs.micropython.org/en/latest/esp8266/tutorial/intro.html#intro
https://code.visualstudio.com/
http://fritzing.org/home/

E
rro

r!

U
n
k
n

o
w

n

d
o

c
u

m
e

n
t

p
ro

p
e

rty

n
a

m
e

.

E
rro

r! U
n
k
n
o

w
n
 d

o
c
u
m

e
n
t p

ro
p
e
rty

 n
a
m

e
.

E
rro

r! U
n

k
n

o
w

n
 d

o
c
u

m
e

n
t p

ro
p

e
rty

n
a

m
e

.

 HCC Traffic Light Toy - How to

SNUG-2018-Howto

 Rev. 1 — 3 Nov 2018 29 of 30

 HCC Traffic Light Toy - How to

6. Contents

1. Overview .. 3
2. The Hardware ... 3
2.1 NodeMCU – WiFi enabled processor 3
2.1.1 Connecting to your device 3
2.1.2 Resetting your device back to factory defaults ... 4
2.1.3 Wiring ... 4
3. Getting Started .. 6
3.1 Development Environment 6
3.1.1 Creating a pymakr.conf file................................. 7
3.1.2 Creating main.py .. 10
3.1.2.1 Main.py Simple ... 10
3.1.2.2 Main.py With WiFi .. 15
3.1.3 Close and Reopen VS Code 23
3.1.4 Sending Code to your NodeMCU 23
4. All Done .. 26
5. References ... 27
5.1 ESP8266 .. 27
5.2 NodeMCU .. 27
5.2.1 Aliexpress... 28
5.3 Micropython.. 28
5.4 Visual Studio Code ... 28
5.5 Fritzing ... 28
6. Contents ... 30

